TWO EXACT SOLUTIONS OF THE EQUATIONS OF HYDRODYNAMICS OF THE TRIPLE-WAVE TYPE

GIDRODINANCKICI TITPA TROINOI VOLNY/

PMM Vol.28, № 6, 1964, pp.1139-1142

> A.F. SIDOROV
(Sverdlovsk)
(Received March 14, 1964)

In the papers [1 and 2] are given exact solutions of the problem of plane unsteady flow of isothermal gas, arising in the motion of two perpendicular pistons, and oi the problem of discharge into a vacuum along on oblique wall of polytropic gas for $1<\gamma<3$ (where γ is the adiabatic index). The solutions consist of double and simple waves [1].

In the present paper we consider the analogous problems for the threedimensional case. The exact solution is given of the problem of the flow of an isothermgl gas, bounded by three moving mutually orthogonal planes, and also of the problem of discharge of a plytropic gas into a vacuum along a certain two-sided angle, for $1<y<2$. In these solutions there occurs a sequence of contiguous waves of rank $0,1,2$ and 3 . The generalization to the three-dimensional case is not trivial, since triple waves are described by an over-determined nonlinear system of partial differential equations with a complicated structure, the study of the compatibility of which is very difficult.

1. In the hodograph space u_{1}, u_{2}, u_{3} (u_{1} are the components of the velocity vector) the system of equations, describing triple waves under the assumption of potential and isentropic flow, has the form [3]

$$
\begin{align*}
& \sum_{i k} A_{i k}{ }^{0} L_{i k}^{j}=0 \quad\binom{j=0,1,2}{i, k=1,2,3} \quad A_{i k}^{\circ}=\delta_{i k} \theta-x^{2} \theta_{i} \theta_{k} \quad\left(x=\frac{1}{\gamma-1}\right) \tag{1.1}\\
& L_{i k}^{\circ}=(-1)^{i+k}\left|\begin{array}{l}
x \Pi_{m p}+\delta_{m p} \kappa \Pi_{n p}+\delta_{n p} \\
x \Pi_{m q}+\delta_{m q} \chi \Pi_{n q}+\delta_{n q}
\end{array}\right| \tag{1.2}\\
& L_{i i}^{1}=(-1)^{i+k}\left\{\left|\begin{array}{c}
x \Pi_{m p}+\delta_{m p} \alpha \Pi_{n p}+\delta_{n p} \\
x \theta_{m q}+\delta_{m q} x \theta_{n q}+\delta_{n q}
\end{array}\right|+\left|\begin{array}{l}
x \theta_{m q}+\delta_{m p} x \theta_{n p}+\delta_{n p} \\
x \Pi_{m q}+\delta_{m q} \alpha \Pi_{n q}+\delta_{n q}
\end{array}\right|\right\} \tag{1.3}\\
& L_{i k}^{2}=(-1)^{i+k}\left|\begin{array}{ll}
x \theta_{m p}+\delta_{m p} & x \theta_{n p}+\delta_{n q} \\
x \theta_{m q}+\delta_{m q} & x \theta_{n q}+\delta_{n q}
\end{array}\right| \tag{1.4}\\
& \Pi=\Pi\left(u_{1}, u_{2}, u_{3}\right), \quad \theta=\theta\left(u_{1}, u_{2}, u_{3}\right), \quad \Pi_{i k}=\frac{\partial^{2} \Pi}{\partial u_{i} \partial u_{k}}, \quad \theta_{i k}=\frac{\partial^{2} \theta}{\partial u_{i} \partial u_{k}} \tag{1.5}\\
& (m, n \neq k ; m<n ; p, q \neq i ; p<q)
\end{align*}
$$

Here γ is the adiabatic index, θ is the square of the velocity of sound, $\delta_{i x}$ is the Kronecker symbol. After finding the functions η and θ from the syatem of three equations (1.1), the motion in physical space x_{1}, x_{3}, x_{3}, t is determined by the relations

$$
\begin{equation*}
x_{i}=x \Pi_{i}+u_{i}+t\left(x \theta_{i}+u_{i}\right) \quad(i=1,2,3) \quad\left(\Pi_{i}=\frac{\partial \Pi}{\partial u_{i}}, \quad \theta_{i}=\frac{\partial \theta}{\partial u_{i}}\right) \tag{1.6}
\end{equation*}
$$

The equations for isothermal gas can be obtained by setting formally $x=1$ in (1.2) to (1.6), introducing instead of θ. the function $q=\ln p$ (where p is the density of the gas) and instead of A : the expressions

$$
\begin{equation*}
A_{i k}^{1}=\delta_{i k}-q_{i} q_{k}, \quad q_{i}=\partial q / \partial u_{i} \tag{1.7}
\end{equation*}
$$

Let us consider the equations for triple waves in 1sothermal gas with the equation of state $p=p^{-1}$ (where p is the pressure, the isothermal velocity of sound being set equal to unity). The last equation of the system (1.1) for $f=2$ is satisfied by a function of the form

$$
\begin{equation*}
q=u_{1}+u_{2}+u_{3}+C \quad(C=\mathrm{const}) \tag{1.8}
\end{equation*}
$$

The two remaining equations of the system (1.1) for from (1.8) take the form

$$
\begin{gather*}
\left|\begin{array}{ll}
\Pi_{21} & \Pi_{31} \\
\Pi_{23} & \Pi_{33}+1
\end{array}\right|-\left|\begin{array}{ll}
\Pi_{21} & \Pi_{31} \\
\Pi_{22}+1 & \Pi_{32}
\end{array}\right|+\left|\begin{array}{ll}
\Pi_{11}+1 & \Pi_{31} \\
\Pi_{12} & \Pi_{32}
\end{array}\right|=0 \quad \text { for } \quad i=0 \tag{1.9}\\
\Pi_{21}+\Pi_{31}+\Pi_{32}=0 \quad \text { for } j=1 \tag{1.10}
\end{gather*}
$$

Making use of (1.10), we can express Equation (1.9) as follows:

$$
\left|\begin{array}{ll}
\Pi_{21} & \Pi_{21} \tag{1.11}\\
\Pi_{23} & \Pi_{33}
\end{array}\right|-\left|\begin{array}{ll}
\Pi_{21} & \Pi_{31} \\
\Pi_{22} & \Pi_{32}
\end{array}\right|-\left|\begin{array}{ll}
\Pi_{11} & \Pi_{31} \\
\Pi_{12} & \Pi_{32}
\end{array}\right|=0
$$

The system of equations (1.10) and (1.11) for the function π has a solution of the form

$$
\begin{equation*}
\boldsymbol{I I}=f_{1}\left(u_{1}\right)+f_{2}\left(u_{2}\right)+f_{3}\left(u_{3}\right) \tag{1.12}
\end{equation*}
$$

Here the functions f_{1} are arbitrary.
Accordingly, for isothermal gas we find

Fig. 1 a solution of the system of equations for triple waves, depending on three arbitrary functions of one independent variable, with the function q defined by (1.8).

Let us make use if the solution so dotained for finding the flow of gas bounded by three mutually orthogonal moving planes.

Let the isothermal gas at the initial instant of time $t=0$ be included at rest inside a three-sided corner; bounded by the planes $x_{1}=0(t=1,2,3)$. At the instant of time $t=0$ the planes start to move according to the law

$$
\begin{equation*}
x_{i}=F_{i}(t) \tag{1.13}
\end{equation*}
$$

Where the $F_{s}(t)$ are such that up to a certain moment of time T there do not appear in the motion any strong discontinuities. The case with discontinuities can be considered quite analogousiy. This is done explicitly for two-dimensional case in [1].

Then for $0<t<T$ in the x_{1}, x_{2}, x_{3} space we shall have the following pattern of flow (Fig.1). The planes $P_{\text {a }}$ are planes of weak discontinuities, and the equetions of their'motions can be written in the form $x_{1}=t$ (the velocity of sound being taken equal to unity).

As a whole, the motion is three-dimensional. In the region A, bounded by the planes P_{f} it is at rest. In the regions $A_{1 k}(t \neq k)$, bounded by the planes $x_{j}=\delta(y \neq t, j \neq k)$ and $P_{l}(l=1,2,3)$, we shall have onedimensional motion, in the form of a traveling Riemann wave.

In the region $A_{1}(t-1,2,3)$, bounded by the planes $x_{k}=0, x_{1}=0$ ($k, j \neq \tau$) and P_{1}, we shali have two-dimensional motion of double-wave type, similar to that considered in [1]. Finally, in region B, bounded by the planes $x_{1}=0$ and P_{1}, there will be motion in the form of a wave of rank three.

Prom the condition for continuity of the solution in the regions A_{1} with the traveliing Rieman waves at the planes $P_{1}, P_{k}\left(j \neq i, k \neq i\right.$ for $\left.A_{1}\right)$ there follow the relations $q=u_{k} 4 q_{0} \quad$ for $\quad u_{i}=0, u_{j}=0 ; \quad q=u_{j} 4 q_{0} \quad$ for $\quad u_{i}=0, \quad u_{k}=0$

From similar considerations for the region B at the planes P_{1}, the following boundary conditions are established (with the help of the already known solution for double waves) :

$$
\begin{equation*}
q=u_{k} 4 u_{j}+q_{0} \quad(i=1,2,3 ; k, i \neq i) \quad \text { for } \quad u_{i}=0 \tag{1.15}
\end{equation*}
$$

Accordingly, we can satisfy conditions (1.14) and (1.15), if in (1.8) we set $C=q_{0}$. The question of the uniqueness of this solution remains open. Finally, let us introduce the following summary for the solution of the problem formulated:

$$
\begin{equation*}
u_{i}=0 \text {, in region } A \tag{1.16}
\end{equation*}
$$

$$
u_{j}=u_{k}=0 \quad(k, j \neq i), \quad u_{i}=u_{i}\left(x_{i}, t\right), \quad q=u_{i} 4 q_{0 \text { in region }} A_{i}
$$

$$
u_{i}=0, \quad u_{j}=u_{j}\left(x_{j}, t\right), \quad u_{k}=u_{k}\left(x_{k}, t\right) \quad(k, j \neq i), \quad q=u_{j} 4 u_{k} 4 q_{a_{0} \text { in region }} A_{j k}
$$

$$
u_{i}=u_{i}\left(x_{i}, t\right), \quad q=u_{1} \psi u_{2} \nleftarrow u_{3} \& q_{0} \text { inregion } B
$$

Here $t=1,2,3$, whilst the functions $u_{1}\left(x_{1}, t\right)$ are found from Equations

$$
x_{i}=f_{i}^{\prime}\left(u_{i}\right)+u_{i}+t\left(1 \div u_{i}\right)
$$

arising from (1.6), whilst the f_{1}, in accordance with (1.13), are determined from Equations

$$
\begin{equation*}
F_{i}^{\prime}(t) t+F_{i}^{\prime}(t)+f_{i}^{\prime}\left[F_{i}{ }^{\prime}(t)\right]=F_{i}(t)-t \quad(i=1,2,3) \tag{1.18}
\end{equation*}
$$

Similar formulas also hold for the solutions with different types of discontinuity.
8. Let us consoder a gas for which the equation of state is

$$
p=a^{2} \rho^{\gamma} \quad\left(a^{2}=\text { const }\right) .
$$

We shall seek a solution of the system (1.1) in the form

$$
\begin{equation*}
\Pi=\theta=\theta(r)=\theta\left(a_{\theta}+a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}\right) \quad\left(a_{0}, a_{1}, a_{2}, a_{3}=\mathrm{c} \omega_{4} s t\right) \tag{2.1}
\end{equation*}
$$

In this case all three equations of the system (1.1) are the same and have the form

$$
\begin{equation*}
3 \theta+2 \chi A \theta \theta^{\prime \prime}-x^{2} A \theta^{\prime 2}=0 \quad\left(A=a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}\right) \tag{2.2}
\end{equation*}
$$

Integrating (2.2), we obtain

$$
\begin{equation*}
r=\int\left(C_{1} \theta^{x}+\frac{3 \theta}{\chi A(x-1)}\right)^{-1 / 2} d \theta+C_{2} \tag{2.3}
\end{equation*}
$$

Here C_{1} and C_{2} are arbitrary constants. With $C_{1} \neq 0$, there is under the integral sign of (2.3) a polynomial expression, and according to well known criteria of integral (2.3) is expressed by elementary functions only for $Y=2 \pm(2 k+1)^{-1}$, where k is an integer. With the help of (2.3) and (1.6) we can obtain a family of exact solutions of the equations of nydrodynamics of the triple-wave type, depending on the constants C_{1} and a_{1} ($t=0,1,2,3$).

The solutions under consideration are three-dimensional self-similar flows with the independent delf-similar variables $\xi_{i}=(1+t)^{-1} x_{i}(i=1,2,3)$.

When $C_{1}=0$ we shall have for the sound velocity 0 from (2.3)

$$
\begin{equation*}
c=\alpha_{0} \nleftarrow \alpha_{1} u_{1}+\alpha_{0} u_{2}+\alpha_{0} u_{3} \quad\left(\theta=c^{2}\right) \tag{2.4}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{2}^{3}=\frac{3}{4 x(x-1)} \tag{2.5}
\end{equation*}
$$

We shall show that with the help of (2.4) we can solve the problem of discharge of gas into a vacuum from a certain infinite three-sided corner, one of the sides of which is instantaneously removed, whilst the discharge occurs along the continuation of the planes of the other two sides. Suppose that in the gas at rest $0=1$. In (2.4) let us 3et

$$
\alpha_{0}=1, \quad \alpha_{1}=h, \quad \alpha_{2}=h \cot \alpha, \quad \alpha_{3}=h \cot \beta
$$

$$
\begin{equation*}
h=\frac{\gamma-1}{2}, \quad \cot \alpha=\left(\frac{1+\gamma}{3-\gamma}\right)^{1 / 2}, \quad \cot \beta=\left(\frac{1+\gamma}{(3-\gamma)(2-\gamma)}\right)^{1 / 2} \tag{2.6}
\end{equation*}
$$

Here a_{1} and a_{2} are defined so that when $u_{3}=0$ a double wave results, solving the problem of plane discharge into a vacuum along an oblique wall (see [2]), whilst a_{3} is determined from the condition (2.5). From it follows that the discussion is valid only for $y<2$.
 The flow in the space of the self-similar variables ξ_{1} is found from the linear system

$$
\begin{gathered}
1+h u_{1}+h \cot \alpha u_{2}+h \cot \beta u_{3}+u_{1}=\xi_{1} \\
\cot \alpha\left(1+h u_{1}+h \cot \alpha u_{2}+h \cot \beta u_{3}\right)+u_{2}=\xi_{2}(2.7) \\
\cot \beta\left(1+h u_{1}+h \cot \alpha u_{2} 4 h \cot \beta u_{3}\right) 4 u_{3}=\xi_{3}
\end{gathered}
$$

the determinant of which depends upon Y and does not vanish identically. In Figs. 2 and 3 are given the regions of flow in the hodograph space and in the $\xi_{1}, 5_{2}, 5_{3}$ space, when the gas at the initial instant of time occupied the three-sided corner bounded by the planes

$$
\begin{equation*}
x_{1}=0, \quad x_{2}=x_{1} \cot \alpha, \quad x_{3} \cot \alpha=x_{2} \cot \beta \tag{2.8}
\end{equation*}
$$

Fig. 2
for $x_{i} \geqslant 0$, and then the side $x_{1}=0$ is removed.
In the hodograph space the regions of flow correspond to the tetrahedron $A B C O$, bounded by the planes

$$
\begin{gathered}
\left(S_{1}\right) u_{3}=0, \quad\left(S_{2}\right) u_{2}=u_{1} \cot \alpha, \quad\left(S_{3}\right) u_{3} \cot \alpha=u_{2} \cot \beta \\
\left(S_{4}\right) 1+h u_{1}+h \cot \alpha u_{2}+h \cot \beta u_{3}=0
\end{gathered}
$$

In $\xi_{1}, \xi_{2}, \xi_{3}$ space the tetrahedron $A^{\prime} B^{\prime} C^{\prime} O^{\prime}$, bounded by the planes
$\left(S_{1}\right) \quad \cot \beta+h \cot \beta \xi_{1}+h \cot \alpha \cot \beta \xi_{2}-\left(1+h+h \cot ^{2} \alpha\right) \xi_{3}=0$

$$
\begin{aligned}
& \left(S_{2}^{\prime}\right) \xi_{2}=\xi_{1} \cot \alpha, \quad\left(S_{3}^{\prime}\right) \xi_{3} \cot \alpha=\xi_{2} \cot \beta \\
& \left(S_{4}^{\prime}\right) 1+h \xi_{1}+h \cot \alpha \xi_{2}+h \cot \beta \xi_{3}=0
\end{aligned}
$$

corresponds to the triple wave. The region lying above the plane ($s_{1}{ }^{\prime}$) and bounded by the three planes, passing through each pair of the straight ines $l_{i}(i=1,2,3)$, yarallel to the $5 s-a x i s$, corresponds to the double wave; in the hodograph space this region corresponds to the plane (S_{1}).

Finally, the region bounded by the plane $\left(S_{3}{ }^{\prime}\right)$, the plane passing through the straight lines i_{1} and i_{3}, the planes $Y_{1} l_{1}, Y_{2} ?_{3}$, passing through the lines l_{1} and l_{3} orthogonaily to the g_{1}-axis', is the region of the traveliing Riemann wave with $u_{3}=u_{3}=0$. In the hodograph space it transforms
into the line $A O$. We notice that the angle between the planes ($S_{a^{\prime}}$) and $\left(S_{3}{ }^{\prime}\right)$, along which the discharge occurs, does not depend upon γ and is

Fig. 3
equal to $\pi / 3$. The front of the discharge in the vacuum ($0=0$) is formed by the three planes $\left(S_{4}^{\prime}\right), l_{1} y_{1}$ and $l_{1} l_{2}$, intersecting at the point A^{\prime}. Moreover, $\left(S_{1}^{\prime}\right)$ is orthogonal to the planes $\left(S_{2}^{\prime}\right)$ and (S_{3}^{\prime}), the plane $l_{1} y_{1}$ is orthogonal to ($S_{3}{ }^{\prime}$) and the plane $l_{1} l_{2}$ is orthogonal to (S_{a}^{\prime}) The plane $Y_{a} l_{3}$ corresponds to the front of the weak discontinuity propagating into the stationary gas.

BIBLIOGRAPHY

1. Pogodin, Lu. Ia., Suchkov, V.A. and Ianenko, N.N., 0 begushchikh volnakh uravnenil gazovoi dinamiki (On travelling waves of the equations of gasdynamics). Dokl.Akad.Nauk SSSR, Vol.119, Ne 3, 1958.
2. Suchkov, V.A., Istechenie v vacuum na kosoi stenke (Flow into a vacuum along an oblique wall). PNK Vol.27, N 4, 1963.
3. Sidorov, A.P., O nestatsionarnykh potentsial'nykh dvizhenilakh politropnog gaza s vyrozhdennym godografom (On nonstationary potential motions of a polytropic gas with a degenerate hodograph). PNM Vol.23, N 5,1959.
