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In the papers [1 and 2] are gilven exact solutions of the problem of plane
unsteady flow of 1sothermal gas, arising in the motion of two perpendicular
pistons, and of the problem of discharge into & vacuum along on oblique wall
of polytropic gas for 1< y < 3 (where y is the adiabatic index). The
solutions consist of double and simple waves [1].

In the present paper we consider the analogous problems for the three-
dimensional case. The exact solution 1s given of the problem of the flow of
an 1sothermal ges, bounded by three moving mutually orthogonal planes, and
also of the problem of discharge of a plytropic gas into a vacuum along a
certain two-slded angle, for 1< y < 2 ., In these solutions there occurs a
sequence of contlguous waves of rank O, 1, 2 and 3. The generalization to
the three-dimensional case 1s not trivilal, since triple waves are described
by an over-determined nonllnear system of partial differentlsl equations with
a complicated structure, the study of the compatibllity of which is very dif-
ficult.

1. In the hodograph space Uy, Ugs Ug (ul are the components of the velo-
city vector) the system of equations, describing triple waves under the
assumption of potential and isentroplc flow, has the form [ 3]

AL =0 j=0,1,2>, P e 8.0 — %20, (: 1 )(1.1
; ik™ik (i, k=1, 2,3 A’LIC ik A 916k ke T——:1 )
L_°_ — (_1)i+k xn'mp + 6mpknnp + 6np (1.2)
L ®y + Spxll, + 8,
L= (—ph* { My + Il + Oy + #rg + OmpHOnp 4 Oy } 1.3)
' uemq -+ 6quenq + 6nq %qu + 6mqul—lnq + 6nq
L3 = (—ayiek | Omp + O 1 4= Oy (1.4)
i %0 + Ong %0y + 8y
3?11 420
II = II (uy, u,, uy), 0 = 0 (uy, uy, uy), Hik = —m—k— , eik = W (1.5)

(m, ns=k; m<n; p, g5=i; p<9q)
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Solutions of equations of hydrodynamics for the triple-wave type 1369

Here vy 1s the adiabatic index, 6 1s the square of the velocity of
sound, &,, 1s the Kronecker symbol. After finding the functions oI and 8
from the system of three equations (1.1}, the motion in physical space x,,
xzs X3, t 318 determined by the relatlons

=Wl bt (0, u)  (=1,2, 3) ( =L i:.f_?ﬁ) (1.6)
duy duy
The equations for isothermal gas can be obtained by setting formally x=1

in (1.2) to (1.6), introducing instead of. g the function ¢ = 1np (where p
is the density of the gas) and instead of 4o the expressions

1.
Ag =8y — a9y 9= 3q/0uy 1.7
Let us consider the equations for triple waves in isothermal gas with the
equation of state p = p (where is the pressure, the isothermal veloclty

of sound being set equal to unity). The last equation of the system {(1.1)
for J = 2 1s satisfled by a function of the form

g=1u + ug+ ug+C (C = const) (1.8

The two remaining equations of the system (1.1) for ¢ from (1,8) take
the form

Hﬂl Hm Hﬂl Hsl II11 +1 r‘[3l. ‘ — O fol‘ T 0
- = i= (1.9)
My Mgt+1 Iy 41 Iy Hya Il
Mgy 4 sn Mgy = 0 for =1 (1.10)
Making use of (1.10), we can express Equation {1.9) as follows:
HBI nn H21 H31 ’ Hll H81 l
— — = () .
Oy Ilg |1 PO | PPN I, Ila (149

The system of equations {1.10) and (1.11) for the function [ has & solu~

tion of the form
IT=f, () + fo () + f3 (ua) (1.12)

Here the functions g, are arbltrary.

Accordingly, for isothermal gas we find
A a solution of the system of equationa for
T 3 i , A triple waves, depending on three arbltrary
1 z functions of one Iindependent variable, with
HiY the function ¢ defined by (1.8).

______ Y L A Let us make use if the solution so obtained
1 for finding the flow of gas bounded by three
4 mutually orthogonal moving planes,

bl Let the isothermal gas at the inltial
! s instant of time ¢ = O be included at rest
A, e p) inside a three~-sided corner, bounded by the
1, 2 planes x,= 0 (¢ = 1, 2, 3}). At the instant
“";’L—~"*"' of time ¢ = O the planes start to move
’ A according to the law
g vy =F, () (1.13)
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where the F,(t) are such that up to a cer-
tain moment of time 7T there do not appear
in the motion any strong discontinulties.
The case with discontinuities can be consi-
derfd} quite analogously. This 1is done explicitly for two-dimensional case
in [1].

Then for O < ¢t < T in the x,, xy, Xy space we shall have the following
pattern of flow (Fig.1). The planes p, &re planes of weak discontlnuities,
and the equations of their motions can be written in the form x,= ¢ (the
velocity of sound being taken equal to unity).

o]
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1370 A.P. Sidorov

As a whole, the motion is three-dimensional. Tn the region 4 , bounded
by the planes P it 18 at rest. In the reiions A (¢ # x), bounded by
the planes x,= b (J ¥t, J¥ k) and P, (1=1,2, 3), we shall have one-
dimensional motion, in the form of a travelling Riemann wave,

In the resion 4, (4 = 1. 2. 2). bounded by the nlanss = = O - = 0
T uiie I'egalhl A v = 4y €5 2/, OOUIGSCG Uy WIS piaNes x,= VU, X, =VU
8

1 N

(x, { # ¢) and p,, we shall have two-dimensional motion of double-wave type,

similar to that considered in [1]. Finally, in region 5 , bounded by the

g;:nea x;=~ 0 and P, , there will be motion in the form of a wave of rank
ee.

From the condition for continuity of the solution in the regions 4, with
the travelling Rieman waves at the planes p,, p, (J # ¢, k¢ ¢t for 4,)
there follow the relations

g=1w 4 qo for u;=20,u;=0; g=u% g for y; =0, u, =0 (1.14)

From simlilar considerations for the region 5 at the planes p,, the fol-
lowing boundary conditions are established (with the help of the already
known solution for double waves):

= A ujdg ((=1,23kj%i) for uy=0 (1.15)
Accordingly, we can satisfy conditions (1.14) and (1.15), if in (1.8) we
set ¢ = @,, The question of the uniqueness of this solution remains open.
Finally, let us introduce the following summary for the solution of the prob-
lem formulated:
ui=0 1t veglon A “ 16)
uj=we=0 (k%1 w=1u@yt, ¢=u4 ginregiond;
ui == 0, uj = uJ (z]-, t), uk = uk (:ck, t) (k, ]. # i), q = u_,'- 47 uk 4‘ q°in x'egionAJ-k
ui=ui(zi, t), q=u14;-u24> us 4 go imregion B
Here { = 1, 2, 3, whilst the functions u,(x,,t) are found from Equations
sy =fi (w) +uy+t(1-+uw (1.17)

arising from (1.6), whilst the g,, in accordance with (1.,13), are determined
from Equations

Fi@e+FA @O+ £ [F/Ol=F () —¢ (=127 (1.18)

Similar formulas alsc hold for the solutiones with different types of dis-
continuity.

2. Let us consoder a gas for which the equation of state is
p = a?p’ (a® = const).
We shall seek & solution of the system (1.1) in the form
IT=06=0() =0 (34 + ayu; + aquz + agug) (ag, a1, ag, a5 = coust) (2.1)

In this case all three equations of the system (1.1) are the same and have
the form

30 4 2xA400" — %2402 = 0 (A = a? 4 a? + ag) 2.2
Integrating (2.2), we obtain
_ x 30 -'h
t—S(CIO +m) d0 4 C, (2.3)

Here (C, and (, are arbitrary constants. With (,# O , there 1s under
the integral sign of (2.3) a polynomial expression, and according to well
known criteria of integral (2.3) is expressed by elementary functions only
for y = 2 #(2x + 1)"!, where k is an integer. With the help of (2.3) and
(1.6) we can obtain a family of exact solutions of the equations of hydro-
%ynamiqs of the)triple-wave type, depending on the constants (, and a,

t=0,1, 2, 3).
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The solutions under consideration are three-dimensional self-similar flows
with the independent delf-similar variables =0+ ti(i=1,23).

When (,= O we shall have for the sound velocity o from (2.3)
¢ = ag 4 oy + Gguy F guy 0 =2c) (2.4)

o + 0% + af = T (x3— 5 (2.5)

Moreover,

We shall show that with the help of (2.4) we can solve the problem of dis-
charge of gas Into a vacuum from a certain infinite three-sided corner, one
of the sldes of which is instantaneously removed, whilst the discharge occurs
along the continuation of the planes of the other two sides. Suppose that in
the gas at rest o =1 . In (2.%4) let us set

=1, a=h ay=hcta, a;=~hct(B

1 1
T == IART S S & S L
2 3—r B—me—m1
Here a, and ¢, are defined so that when y,= O a double wave results,
solving the problem of plane discharge into a vacuum along an oblique wall
(see [2]), whilst 4, 1s determined from the condition (2.5). From it fol-
lows that the discusslon is valid oxilmz for y<2.

The flow in the space of the self-s lar variables
g, is found from the linear system

1+ huy + hocot quy 4 b cot Buy + uy = §;
cot a (1 4 huy + h ot quy 4 h oot Bug) 4 u, = &, (2.7)
et B (14 huy + h cot auy 4 hocot fug) 4 uy=§,

the determinant of which depends upon y and does
not vanlsh ildentically. In Figs, 2 and 3 are given
the reglons of flow in the hodograph space and in
the g,, ,, & space, when the gas at the initial
mstan{: of time occupled the three-slded corner
bounded by the planes

z, = 0, Zy = 21 cot O, 25 cot & = 25 cot § (2.8)

Pig. 2
for z; > 0, and then the side z;, = 0 is removed.

In the hodograph space the regions of flow correspond to the tetrahedron
ABCO, bounded by the planes

(S ug =10, (Sg) up=1u; cot @, (S3) uy cot & = uy cot B (2.9)
Sl 4 huy+ heotau, 4 heotBu,=0
In ¢g,, g€,, &3 space the tetrahedron A’R‘C‘0’, bounded by the planes
(51) cotf +hootBE +hootaeotfl —(1+h+het?a)fg=0
(S2") & = &, cot , (S3') Egcot @ = E, cot B (2.10)
SN1 4+ hE 4+ hootal, +h cotBt, =0

corresponds to the triple wave. The reglon lying above the plane (S,’) and
bounded by the three planes, passing through each pair of the straigh%: lines
l; (i =1, 2, 3), parallel to the g,-axis, corresponds to the double wave; in
the hodograph space this region corresponds to the plane (S5,) .

Finally, the region bounded by the plane (S,‘) » the plane passing through
the straight lines 1, and I, , the planes «y,l, , vyply , passing throu%h
the lines 1, and 13 orthogonally to the g,-a.xis, is the region of the trav-
elling Riemann wave with u,= ys= O . In the hodograph space 1t transforms
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into the line A0 . We notice that the angle between the planes (S,') and
(ss’) , along which the discharge occurs, does hot depend upon y and is

%o G %\ [b
0[
b
A \\ 0 ﬁ‘
\|
\
B’ C'

Fig. 3

equal to n/3 . The front of the discharge in the vacuum (o = O) is formed
by the three planes (S{), l,y, and 7,1, , intersecting at the point 4’/
Moreover, (S/) 1s orthogonal to the planes (S;) and (5/) , the plane 1,y,
is orthogonai to (S,’) and the plane 1,1, is orthogonal to (S7) . The plane
vals corresponds to the front of the weak dlscontinulty propagating into the
s%ationary gas.
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